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Hard hexagons: interfacial tension and correlation length 

Rodney J Baxter and Paul A Pearce 
Research School of Physical Sciences, The Australian National University, Canberra ACT 
2600, Australia 

Received 3 August 1981 

Abstract. Functional equations are derived for the eigenvalues of the row-to-row transfer 
matrix of the generalised hard hexagon model. These equations are exact for a lattice with 
N columns and are solved in the limit N + CO. The partition function per site is thereby 
rederived without the previous analyticity assumptions. We are also able to calculate the 
interfacial tension and the correlation length; the associated critical exponents are fi  = v = 
v' = 2 in agreement with the scaling relations. 

1. Introduction 

In previous papers (Baxter 1980a, 1981a) it has been shown that the hard hexagon 
model (triangular lattice gas with nearest-neighbour exclusion) can be solved exactly. 
More specifically, the free energy has been obtained using a matrix inversion trick and 
the order parameters (sublattice densities) have been obtained using corner transfer 
matrices. These techniques apply equally to the eight-vertex model (Baxter 1980b, 
1981b, Shankar 1981). However, for the eight-vertex model (Baxter 1972), one can 
also obtain tractable equations for the eigenvalues of the row-to-row transfer matrix. It 
is thus possible to calculate the interfacial tension (Baxter 1973) and correlation length 
(Johnson et a1 1973). It is clearly desirable to carry out such a program for hard 
hexagons. In this paper we indicate how this is done and give the main results. In 
particular, we find that the critical exponents are 

p = y = (1.1) 

Since a = ar  = f, the scaling relations 

(1.2) a = a r  y = v r  = (p + v ) / d  = (2-a)/d 

(where d = 2 is the dimensionality) are therefore satisfied. 
The layout of the paper is as follows. In the next section we define the generalised 

hard hexagon model. In 8 3 we derive an exact functional equation satisfied by the 
transfer matrix. We write this in ways appropriate to the various ordered and 
disordered regimes. In 004 and 5 we consider regimes I and I1 (Baxter 1980a), 
respectively; these include the pure hard hexagon model as a limiting case. We outline 
the method for solving the transfer matrix equations and give the results. The results for 
regimes I11 and IV, and further details of the calculation, will be given elsewhere. 

0305-4470/82/030897 + 14$02.00 @ 1982 The Institute of Physics 897 
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2. Generalised hard hexagon model 

The hard hexagon model can be regarded as a special case of a hard square lattice gas 
with diagonal interactions. We therefore begin by considering a square lattice of P rows 
and N columns with toroidal boundary conditions. To each site i of the lattice we assign 
an occupation number vi; if the site i is empty ui = 0, if the site i is full ui = 1. The 
partition function for this lattice of NP sites is then 

where the sum is over all values of the occupation numbers and the product is over all 
faces of the lattice (i, j ,  k, 1 being the four sites round a face, starting at the bottom-left 
and going anticlockwise). The function W ( a ,  b, c, d )  is the Boltzmann weight of the 
interactions within a face. It is of the form 

if ab = bc = cd = da = 0 ( a +  b c c + d ) / 4  Lac+ Mbd - a + b - c + d  t 
( 2 . 2 )  

mz e 
otherwise. Wa, 6, c, d )  = [ 

Here the activity z > 0 has been shared out between adjacent faces, L and M are the 
diagonal interactions, m is a trivial normalisation factor and t is a parameter that cancels 
out of the partition function and the transfer matrix. 

Let U = {ul, u2,. . . , uN} be the configuration of a row of sites with nearest- 
neighbour exclusion so that a , , ~ ~ + ~  = 0, j = 1,2 ,  . . . , N. The number of such configura- 
tions is then 

A N  = [$( 1 + &)IN + [$( 1 - &)IN.  (2.3) 

If U and U' are the configurations of two successive rows the (row-to-row) transfer 
matrix V is defined to be the AN X A N  matrix with elements 

N 

v-,,,= n W(vj,  uj+1, U;+,, ui). 
j = l  

The partition function can then be written as 

UlrU2. ..., U P  

where the sum is over all row configurations and Tr denotes trace. Unless L = M, the 
matrix V is not symmetric. Its eigenvalues will therefore generally be complex. 
However, since V is non-negative the Perron-Frobenius theorem guarantees that the 
eigenvalue Vo of largest modulus is real and non-degenerate. The partition function 
per site is therefore given by 

We wish to consider models whose transfer matrices commute. Following Baxter 

(2.7) 

It can then be shown that if two models, each satisfying this constraint, differ in their 

(1980a), we restrict our attention to models satisfying the constraint 
L M  z = (1 -e-")(l -e-M)/(eL+M - e -e ). 
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values of z ,  L, M, but have the same value of 

A = z-1/2(1 - eL+M 1 (2.8) 

then their transfer matrices commute. 
Eliminating z between (2.7) and (2.8) gives a symmetric biquadratic relation 

between e' and eM. This is naturally parametrised in terms of elliptic functions. 
Explicitly, we use the parametrisation 

z = e 3 ( 2 ~ ) e 2 ( u ) e 2 ( ~  - u ) / [ e 3 ( ~ ) e 4 ( 2 ~  + U ) ]  A2 = [8(A)/8(2A)I5 (2.10) 

where A = 7 / 5 ,  -A < U < 2A and 

00 

e ( u ) = e ( u , q 2 ) = s i n u  n (1-q2" e2'")(1-q2" e-2iu)(1-q2n) (2.11) 

is (apart from an irrelevant factor) a standard elliptic theta function of nome q2 with 
-1 < q 2  < 1. If we choose m and t in (2.2) appropriately, the Boltzmann weights of the 
allowed configurations round a face can now be written as 

n = l  

w1(u) = w(0000) = 8(2A + u)/8(2A) 

w3(u)  = W(OlO0) = W(OOO1) = 8(A - u ) / 8 ( A )  

w d u )  = W(1010) = 8(2A - u)/8(2A) 

ws(u) = W(O101) = 8(A + u ) / 8 ( A ) .  

= w(iooo) = w(ooio) = * e ( u ) / [ e ( ~ ) e ( 2 ~ ) ] ' / ~  

(2.12) 

Regarding q 2  as fixed and U as a variable we see that (2.4) and (2.12) define a 
one-parameter family of commuting transfer matrices. 

We end this section with two remarks. First, in the next section we will need to 
distinguish between the cases q 2  < 0 and q 2  > 0. This leads us to consider four distinct 
physical regimes (phases): 

Regime I (disordered) -1<q2<0 ,  - A < u < O  

Regime I1 (triangular ordered) O<q2<1, - A < u < O  
(2.13) 

Regime I11 (disordered) O<q2<1,  O<u<A 

Regime IV (square ordered) -1<q2<0 ,  O < u < A .  

From (2.10) and (2.11) it follows that the borderline case q2 = 0 occurs on lines in the 
(L, M )  plane given by 

A = *Ac, = [$(I +JS)15. (2.14) 

As we shall see, these lines are in fact the critical lines (phase boundaries) of the model. 
The second remark is that, in the above parametrisation, the hard hexagon model 
(L = 0, M = -00) clearly corresponds to the limit U + -A. Thus only regimes I and I1 are 
relevant to the solution of the hard hexagon model. 
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3. Transfer matrix equations 

3.1. Derivation 

To derive the transfer matrix equations we start by looking at the matrix product of the 
transfer matrices V = V(u) and V‘= V(u + A ) .  Using (2.4) we find 

N 

[ V ~ ’ ] U , O ~ =  1 n W(O;, a~+i, 7 ~ + i ,  T,)W’(7,, 7,+i, ci+i, 
11.12, , T ~ = o , 1  I = 1  

= T r R ( a l , a z , a : , a ’ l ) R ( u 2 , a 3 , ~ ; , ~ : ) .  . . R ( a ~ , c r l , d , a h )  (3.1) 

where the nine matrices R(a1, UZ, U:, ai )  have elements 

[R(gir ~ 2 ,  d,  d )lr1,72 = W ( a i ,  L+Z, ~ 2 ~ 7 1 )  W’(7i972, d,  d 1 (3.2) 

and W’(q,  T ~ ,  a;, a i )  is given by (2.12) with U replaced by U + A .  
If a, = a: = 0,7, can assume the values 0 or 1 and the corresponding R matrices have 

two rows or columns. Otherwise, we must have T, = 0 and the corresponding R matrices 
have one row or column. Thus R(0000) is a 2 x 2 matrix; all the other R matrices are 
row vectors (1 x 2), column vectors (2 x 1) or scalars (1 X 1). We find that R(OOO0) 
has a right eigenvector x and a left eigenvector yT which are independent of U and 
orthogonal. The corresponding eigenvalues are e ( A  - u)8(A + u ) / e 2 ( A )  and 
e2(u)/6J(A)e(2A). We find further than R(0110) is proportional t on  and that R(1000) 
and R(0001) are proportional to yT. 

Because of the periodic boundary conditions, the above observations suffice to show 
that the non-zero elements of [ VV’],,. fall into two categories: either U, = a: for all j 
(these are the diagonal elements), or a ~ i  = 0 for all j .  In the latter case, examination 
of the matrix elements shows that they are in fact the matrix elements of 
[8(u) /8(A)INV(u -2A). In this way we obtain the transfer matrix equation 

v ( u ) v ( u + A ) = [ ~ ( A  - u ) e ( A  + u ) / ~ ~ ( A ) ] ~ I + [ ~ ( u ) / ~ ( A ) ] ~ v ( u  - 2 ~ )  (3.3) 

where I is the identity matrix. 
We have already noticed that V ( u )  is a one-parameter family of commuting transfer 

matrices. Interchanging L and M in (2.7) and (2.8), we see that each V in the family is 
normal, that is, commutes with its transpose. The matrices are therefore simul- 
taneously diagonalisable and have in common a complete set of orthonormal eigen- 
vectors independent of U. If V ( u )  is an eigenvalue of V(u), associated with a particular 
eigenvector, it follows that V ( u )  must satisfy the functional equation given by (3.3). To 
simplify the form of this equation we introduce the ‘dimensionless’ transfer matrix 

(3.4) 

with eigenvalues T ( u ) .  Putting this in (3.3) and using (2.12) then gives the eigenvalue 
equation 

T ( u ) T ( u  + A ) =  1 + T ( u  -2A). (3.5) 

Using the identity @(U + T) = -@(U), we also obtain the periodicity relation 

T ( u  + 5A) = T ( u ) .  (3.6) 
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3.2. Conjugate modulus parametrisations 

Rather than solve the transfer matrix equation (3.5) directly it is convenient to 
transform to the conjugate modulus forms. These forms differ in the various physical 
regimes but are better suited to our purposes. If -1 C x C 1, we define 

m 
f ( w ,  x ) =  n ( 1  -x"-'w)(l -x"w-')(l - x " )  (3.7) 

n = l  

and adopt the convention 

The function f ( w , x )  is then related .to the elliptic theta function 13(u,4~) by the 
conjugate modulus identities 

( 3 . 9 ~ )  

(3.96) 

The first equation applies when 4 2  > 0, the second when 4 2  < 0. 

I and IV x = - e  = e 2 4 E  4 2  = -e-' ( 3 . 1 0 ~ )  

4 2  = e-=. (3.106) -4+r5& = e-4rru/e I1 and I11 x = e  

Let us now define the new parameters x and w by 
- - n 2 / 5 ~  

Then using the identities (3.9), the parameters m and t in (2.2) can be chosen so that in 
regimes I and IV: 

Regime I - 1 c x c 0 ,  x2<w<1 

Regime IV - 1 c x < o ,  1<w<x-2. 
(3.12) 

In conjugate modulus form the equations (3.4)-(3.6) become 

T ( W ) T ( X 3 W )  = 1 + T ( X 4 W )  

T ( X 5 W )  = T ( w )  

(3.13a) 

(3.136) 

( 3 . 1 3 ~ )  
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This time x and w lie in the ranges 

Regime I1 O < x < l ,  l < w < x - '  ( 3 . 1 5 a )  

Regime I11 O < X < l ,  x < w < l .  (3 .156)  

With this parametrisation the equations (3 .4 ) - (3 .6 )  become 

T ( w ) T ( x w )  = 1 + T ( X 3 W )  

T ( X 5 W )  = T ( w )  

( 3 . 1 6 a )  

( 3 . 1 6 6 )  

( 3 . 1 6 ~ )  

3.3. Analyticity and zeros 

So far, we have used the algebraic properties of the transfer matrix V (  w )  to obtain 
functional equations for its eigenvalues V (  w) .  To solve these equations we now exploit 
the analytic properties of V ( w ) .  From (3 .1  1 )  and (3 .14)  we see that the matrix elements 
of V (  w )  are analytic within the annulus 0 < I w I < 00 in the complex w plane. Since the 
eigenvectors of V (  w )  are independent of w it follows, at least for finite N, that the 
eigenvalues V ( w )  are also analytic in the annulus 0 < I wI 00. Using this fact and 
periodicity it can be shown (by applying the residue theorem to the integral of the 
logarithmic derivative of V ( w )  round a period annulus) that any eigenvalue V ( w )  must 
be of the form 

N 
V ( w ) = R w "  n f ( W / W j ) .  

j = 1  
(3 .17 )  

Here n is an integer, R is complex and w l ,  w2 ,  . . . , wN are the N zeros of V ( w )  within a 
period annulus such as 1 d IwI <  XI-^, Using periodicity and the identity ~ ( x ' w )  = 
- w - ' f ( w ) ,  we also obtain the exact relation 

regimes I, IV 
regimes 11,111. 

N - 5 n - N  

- 5 n - 2 N  
j = l  

(3.18) 

From (3 .17)  it is clear that the eigenvalues V ( w )  are determined by their zeros in the 
complex w plane, or more precisely, by the N + 1 complex numbers R, wl, w2,  . . . , wN. 
From (3 .18) ,  however, only N of these unknowns are independent. In principle, these 
can be determined by solving the N equations 

T ( X P W i )  = -1 I =  1 , 2 , .  . . , N (3 .19 )  

where p = 1 or 4 in regimes I and IV, and p = 2 or 3 in regimes I1 and 111. These 
equations are analogous to the Bethe ansatz equations for the ice-type models (Lieb 
and Wu 1972, equation (147) )  and are readily obtained by choosing w in the transfer 
matrix equations ( 3 . 1 3 a )  and ( 3 . 1 6 ~ )  so that the left side vanishes. 

In the limit of N large, we will see that most of the zeros of the largest eigenvalues 
are densely distributed on circles in the complex w plane. In this limit, it is then possible 
to calculate the largest eigenvalues without precisely locating all their zeros. This we do 
for regimes I and I1 in the next two sections. For hard hexagons, we are interested in the 
limits w + x z  in regime I and w + x- l  in regime 11. 
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4. Regime1 

4.1. Largest eigenvalues 

We wish to solve the transfer matrix equation (3.13~) for the largest eigenvalues in 
regime I. This equation, however, does not distinguish between regimes I and IV; its 
solutions will be eigenvalues in both regimes. On the other hand, the largest eigen- 
values in regimes I and IV will be different. This is because the eigenvalues cross at the 
boundary w = 1. At this point, V ( w )  becomes the shift operator and all the eigenvalues 
are unimodular. 

When N is large, there are many solutions of (3.13~). To select out those 
eigenvalues that are largest in regime I, we appeal to perturbation expansions. 
Perturbation about the vacuum state (the x + 0 -limit in regime I) suggests that for the 
largest eigenvalues 

V ( w )  = 0(1) as N + 00 x2 < I wI < 1. (4.1) 
We therefore look for solutions with this property. Using (4.1) in (3.13) we find that for 
large N 

with E > 0. For large N, this tells us that one of the terms on the right side of (3.13~) is 
exponentially larger (in modulus) than the other. 

By keeping just the dominant term it is now possible to locate the zeros of V (  w )  in 
the limit N + 00. We find that zeros are only allowed on the circles Iwl= /XI-', 1x1, x 2  (or 
more precisely IwI = IxI5"-' ,  I X \ ~ " + ~ ,  I x ~ ~ " + ~  by periodicity). Moreover, if la1 = 1 and 
w = ax is a zero, then so is w = axz and vice versa, so these zeros appear in pairs. From 
(3.17), it follows that for large N, the eigenvalues must be of the form 

where r is a non-negative integer not greater than $N and the aj and b k  are complex 
numbers which depend on x and are unimodular in the limit N + 00. The leading power 
of w is fixed by periodicity, that is, by (3.18). Although we have exhibited the 
dependence of V ( w )  on r, there are, in general, many eigenvalues corresponding to a 
given value of r. The index r labels bands of eigenvalues. 

Define L( w )  by 

with Tr(w) related to Vr(w)  by (3.13~). From (4.3) and (3.7), L(w)  is analytic and 
non-zero in the annulus x4<IwI<Ixl-' and lnL(w) is also analytic therein. Now 
consider the smaller annulus 1 < I w I < 1xl-I. In this annulus the second term on the right 
side of ( 3 . 1 3 ~ )  is dominant (i.e. for large N it is exponentially larger than the first), so 
the first term can be ignored in the limit N + 00. Taking logarithms, using (4.4), Laurent 
expanding and equating coefficients, we can solve for In L( w ) .  We find that 
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where 

f ( x w ,  x"f(x'w, X h )  

f ( x w - ' ,  x 6 ) f ( x 2 w - l ,  2). 4 ( W ) = - w - l  (4.6) 

If we set w = aix in the transfer matrix equation (3 .13~)  the left-hand side vanishes 

(4.7) 

and 

1 + T,(Uj) = 0. 

That is, the ai are solutions of the equations 

Since 14 ( w ) l =  1 when I w I = 1, these equations are consistent with the requirement that 
the a, be unimodular. It is also interesting to note the similarity in form to the Bethe 
ansatz equations. 

For r = O ,  the transfer matrix V ( w )  has just one eigenvalue V o ( w )  given by 
T o ( w )  = c b N ( w ) .  In the physical regime x2< w < 1, this is real and is the eigenvalue of 
largest modulus. From (2.6) and (3.4), it follows that the partition function per site is 

(4.9) 
where w I ( w ) ,  w 4 ( w )  and w 5 ( w )  are given by (3.11). This agrees with the result (Baxter 
1980a) previously obtained by the matrix inversion trick. 

For each positive integer r, (4.5) and (4.8) give a band of complex eigenvalues. Since 
1cb(w- l ) l<1 , forx3<IwI<1,  there will be agap  

(4.10) 

K ( w  1 = -4 w )wsi w ) 4  ( w  ) / w  I (w 1 

V , ( w ) / V o ( w )  = T l ( W ) / T O ( W )  = 4(alw-') 
between the largest and next-largest eigenvalues. For r = 1, (4.8) becomes 

c$N(ul) = 1. 14.11) 

The solutions of this equation give a band of N complex next-largest eigenvalues. For 
r = 2, there is a band of $N(N - 3) complex next-next-largest eigenvalues and so on. We 
shall assume, as seems reasonable from small x expansions, that in the limit N + 03, the 
solutions of (4.8) form continuous distributions on the circles Iu11= 1, la21 = 1, etc with 
densities p ( a l ) ,  p ( a l ,  a2) ,  etc. 

4.2. Correlation length 

We are now in a position to calculate the correlation length in the physical regime 
x2 < w < 1. Since there is a gap between the largest and next-largest eigenvalues; we 
expect the correlation between occupation numbers at two sites, in the same column but 
separated by 1 rows, to decay exponentially for large 1. By standard transfer matrix 
arguments (see, for example, Baxter 1981b), the pair correlation function is 

(4.12) 

where the sum is over all eigenvalues Vr,= , (w)  with a, = ( a l ,  a2, . . . , a,) a multi-index 
labelling the eigenvalues in the rth band. The coefficients cr,+ are independent of I and 
w and depend only on the eigenvectors. In the limit N+m, we assume that these 
coefficients become continuous and absoib the function c,(al, u 2 , .  . . , a,) into the 
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densityp(al, a2,  . . . , ar).  Each sum over a, in (4.12), with r 2 1, can then be replaced by 
an r-fold integral. For 1 large, only the next-largest band of eigenvalues is expected to 
contribute to the leading order asymptotic behaviour of the correlations. Discarding 
the bands with r b 2 and using (4.10), we find for large I 

(4.13) 

In the limit 1 -* CO this integral can be evaluated by steepest descents. Because of the 

4(x3w) = c#J(w-’> (4.14) 

symmetry 

I4(w)l has saddle points at 

W = f W s  ws = ilx (4.15) 

Moreover, if we assume that p(a1) is analytic in the annulus lx11’2 < [all < l ~ l - ~ ” ,  the 
contour lull = 1 in (4.13) is equivalent to the contour (a1[  = l~l-~’~w. Since the contri- 
butions from the two saddle points on this contour are complex conjugates we find that 
for large I 

(4.16) (aoal) - (cro)(crf) - A  e-”-’ cos(1q + S) 
where 

(4.17) 

and A and S are real and related to p(w,w). Hence the correlation length 5 is 
independent of w, as is implied by the commutation properties of the transfer matrices, 
and is given by 

-[-’ = l n ~ ~ ( i ~ ~ \ - ~ ’ ~ ) ~ .  (4.18) 

-E- ’+ iq  4(wJ = e  

As we approach criticality (i.e. let x + 1-) the correlation length 5 diverges and 
q + $T reflecting the onset of triangular ordering. In the original parametrisation (see 
(3.9) and (3.10)), we find that near criticality 

Hence the correlation exponent is 

v = 516. 

(4.19) 

(4.20) 

5. Regime11 

5.1. Largest eigenvalues 

Perturbation expansions about the triangular ordered state (the x -* O+ limit) suggest 
that for the largest eigenvalues in regime I1 

v ( w ) = o ( w ~ ’ ~ ) ~ ~ N + c o  1 < IWI <x-2. (5.1) 
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Using this in the transfer matrix equation (3.16), we find for large N 

I T ( X 3 W ) I  = 0(PN)  >> 1 

J T ( X 3 W ) I  = O(x"" 1 

x 2  < 1 w [ <  x1'2 

x 3 <  jwi <x2 

P 2 < l w l < x  
X I i 2 <  l w l  < x  -1!2 (5.2) 

with E > O .  
If we retain only the dominant term on the right-hand side of ( 3 . 1 6 ~ )  for large N, we 

find that V ( w )  can only have zeros on the circles lwI = x -  ', i , x , x , x? with 
the zeros w =ax-', ax2 and w = bx-''2, bx3'2 appearing in pairs. It follows, from 
(3.17), that the largest eigenvalues for large N must be of the form 

V p , r ( w )  = Rw" n f ( x ~ ~ / a ~ ) f ( x  'u ' /u,  J 

I 1 ' 2  I / >  7 '2  , x 

P 

r - 1  

where n, p ,  r, s and t are integers, the complex numbers a,, b,, c k ,  J I  are unimodular in the 
limit N+co and, by convention, f ( w )  still means f ( w ,  x5). 

In (5.3) we have made the dependence of V(w) on the integers p and r explicit 
because these will label the bands of eigenvalues. From (3.17) and (3.18) we obtain the 
relations 

: = 2 n .  (5.4) 2p + 2r -7- s 4- t = N 

There is in fact another constraint on these integers. If we substitute (5.3) into the 
right-hand side of ( 3 . 1 6 ~ )  with w = a Y 3 ,  we find that it vanishes for n choices of a. The 
left-hand side, however, is known to vanish if and only if a = ai with i = 1,2,  . . . , p or 
a = c k  with k = 1,2 ,  . . . , s. Hence 

n = p + s .  15,S)  

Since other choices of w in the above procedure give no further relations, we conclude 
that 

n = f ( ~ - p - 2 r )  p + 2r = N(mod 3) 
(5.61 

s = f(N -4p - 2r)  t = $(N - p - 2r ) * 

Since p =0(1) and r = 0 ( 1 )  as N+oo for the largest eigenvalues, the requirement 
4p + 2r s N for s to be non-negative is automatically satisfied. 

To solve the transfer matrix equation (3.16) in the limit N+m,  i.e. to eliminate 
c1, c 2 , .  . . , c, and d l ,  d 2 , ,  . . , d,, we can now proceed as for regime I. Use (5.3) and 
(3 .16~)  to define Tp, , (w)  and temporarily regard a l , .  . . , a p  and b l , .  . . , b, as known. 
This function then factors into a known singular part and an unknown part whose 
logarithm is Laurent expansible in the annulus x ' ' ~  < 1 w I < Y2. Likewise, Tp,,(w) can 
be factored in the annulus x3 < 1 wI < x " ~  but with a different unknown part. The 
coefficients of these expansions can then be obtained by equating coefficients on either 
side of (3.16a), retaining the different dominant terms in the two annuli XI'*< I w / <  
x-"' and x - l <  IwI <xw3". For N large, and ( p ,  r )  = (0, 0) =0, this gives 

T d w )  = r 4 N ( w )  x"2<IwJ<x-2 15.7u) 
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where T is a cube root of unity, and for (p, r) # 0 

(5.76) 

where 

The solution in the other half-period annulus is given by the relation 

Tp,r(W) = Tp,r(Xw-l) x e I w I e x (5.9) 

If we set w = aix2 or bjx1'2 in the transfer matrix equation ( 3 . 1 6 ~ )  the left-hand side 

1 + Tp,r(bjx3/2) = 0. (5.10) 

The ai and bi are therefore solutions of the equations 

vanishes and 

1 + TP,r(ai) = 0 

U 

j = 1 , 2  , . . . ,  r. 
k = l  1 = 1  

Again, since I1,6(w)l= l$(w)l= 1 when IwI = 1, these equations are consistent with the 
requirement that the ai and bj be unimodular. 

w C x - ' ,  and for large N, the largest eigenvalue of the 
transfer matrix V ( w )  is given by ( 5 . 7 ~ )  with T = 1. From (2.6) and (3.4), the partition 
function per site is 

x ( w )  = - w 4 ( w ) w s ( w ) I L ( w ) / o l ( w )  (5.12) 

where o l ( w ) ,  w 4 ( w )  and o s ( w )  are given by (3.14). Again we see that this agrees with 
the result (Baxter 1980a) previously obtained by the matrix inversion trick. 

In the physical regime 1 

5.2. Interfacial tension 

For (p, r) = 0 (N = 0 mod 3), we see that ( 5 . 7 ~ )  gives a triplet of largest eigenvalues. But 
this degeneracy cannot occur in the physical regime 1 < w C x - l ,  for finite N, by the 
Perron-Frobenius theorem. The triplet of eigenvalues is therefore asymptotically 
degenerate as N + 00. In the limit of large N, we in fact expect (Fisher 1969) that 

VO;,(w)/ vO;l(w) = T[I - ~ ( e - ~ ' " ) ]  T Z 1  (5.13) 

where we have labelled the triplet of largest eigenvalues of V ( w ) ,  in the obvious way, by 
the choice of the cube root T in ( 5 . 7 ~ ) .  The parameter p =  l /kBT is the inverse 
temperature and U is the interfacial tension. 

To calculate U, we repeat the above calculation of TO( w ) ,  keeping both terms on the 
right-hand side of ( 3 . 1 6 ~ )  and treating the smaller term as a correction. For 1 < I wI < 
x this gives 

T 0 ; A W )  = 77bN(w)M7(w) ( 5 . 1 4 ~ )  

-1 
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where the correction term M,(w)  is given by 

In M T ( w )  = - f 
and 

dw' 
~ { J ( x w / w ' )  ln [ l+  To, . (x3w')]+ J ( w / w ' )  ln [ l+  T 0 , ' 7 ( ~ 2 ~ ' ) ] }  

2Tl / w ' / = l  w 
15.146) 

J ( w )  = w $ ' ( w ) / $ ( w )  15.15) 

with $ ' ( w )  the derivative of $ ( w ) .  The integral equation (5.14) is exact, even for finite 
N. 

From (5.13), the interfacial tension is now given by 

-pa = lim N-' In ln[To,,(w)/To,l(w)] 
N-m 

= lim N-' In ~ n [ ~ , ( w ) / ~ ~ ( w ) ]  15.16) 

with T~ = 1 and T # 1. For w' in the annulus x 1'2 < 1w'1< x-'" and N large, however, we 
find from (5.2) and ( 5 . 7 ~ )  that 

In[ 1 + T ~ , , ( X ~  w ' ) ]  - T $ ~ ( X W ' )  + T+ ( x /  w '1 
(5.17) 

Since N = 0 (mod 3), J I N ( w )  is analytic in the annulus x 2  < I w /  < x - ' .  For large N, we 
can therefore put (5.17) into (5.14b) and integrate by steepest descents. Considered as 
a function of a real variable, $ ( w )  has a single minimum at w = w, with -x  < w, < - x " ~ .  
In the complex plane this corresponds to a saddle point of I$(w) l .  For each term coming 
from (5.17) we find that the contour jw'l= 1 in (5.14b) can be deformed, without 
crossing the poles of J ( w )  at w = x and x - ' ,  to an equivalent contour through the saddle 
point w = w,. Using (5.16), we finally obtain 

-pa = In $ ( w , ) .  (5.18) 

The same result can also be obtained by considering the limit of a large P X N lattice, 
under the constraints P = 0 (mod 3), N = 1 or 2 (mod 3). These constraints introduce a 
mismatched vertical seam into the domain structure of the model. The interfacial 
tension is then related to the excess free energy above the bulk free energy for such a 
system. Let us consider the case N = 1 (mod 3). If K ( w )  is the partition function per site 
for the bulk, as given by (2.6), then the interfacial tension (T is given by 

N-m 

l n [ l +  T , ' , ( x ~ w ' ) ] - ~ $ ~ ( x w ' ) .  

If N = 1 (mod 3), (5.76) and (5.11) give a band of N complex largest eigenvalues 
with p = 1 and r = 0. If we now make the usual assumption that in the limit N + the 
solutions a l  of (5.11) form a continuous distribution on the circle lull = 1 with density 
p ( a l ) ,  we find that for large P 

(5.20) 

Again the lower bands of eigenvalues with p + r 5 2 should not contribute in the limit 
P + 00. As before, the integral can be evaluated by steepest descents, provided p ( u l )  is 
analytic in the annulus x3'* < /all < 1 containing the saddle point a1 = w,w. Doing this 
we again obtain the interfacial tension as given by (5.18). 
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In the limit x + 1-, i.e. at criticality, the interfacial tension vanishes. In the original 

pa - 2 J3(q215/6 q 2  + o+. (5.21) 

parametrisation we find 

Hence the interfacial tension exponent is 

CL = 516. (5.22) 

5.3. Correlation length 

We now turn to the calculation of the correlation length for 1 < w <x-l .  If N = 3L, 
recall that p = r = 0 gives a triplet of largest eigenvalues. The next-largest eigenvalues 
are given by p = r = 1. In this case (5 .7b)  and (5.11) give a band of 6L(L- 1) complex 
eigenvalues. Noting that I$(w)l< 1 for x3I2< Iwl< 1, we see that the gap between the 
largest and next-largest eigenvalues is 

v l , l ( w ) /  v o , l ( w )  = T l , l ( w ) / T o , l ( w )  = cCl(alw-')J(blw-'). (5.23) 

We now repeat the arguments outlined for calculating the correlations in regime I. 
We find that the asymptotic behaviour of the correlation between sites separated by 
1 rows, for 1 large, is 

(UoUJ - (ao>(uO 

Here the contours are closed loops formed by three circuits about the origin on the 
Riemann surface of three sheets on which the function a - a  'I3 is analytic. Except for 
poles on each sheet corresponding to w = x-l ,  x2, etc, $ ( w )  is also analytic on this 
Riemann surface (its values on any two sheets differ only by a complex cube root of 
unity). For large 1, it is therefore possible to evaluate the integral (5.24) by steepest 
descents. 

As before, let w = ws be the saddle point given by $'( w, )  = 0 with -x < ws < -x3/*. 
Let us also assume that the density p ( a l ,  bl) is analytic on the contours and can be 
analytically continued to the saddle points on each sheet corresponding to u1 = w,w and 
bl = x w/w, .  If the contours in (5.24) are then deformed to equivalent contours 
passing through these saddle points, we find that for large E 

312 

(uoaJ -(ao)(aJ - e-"-*[A + B cos($.rrl+ S)] (5.25) 

where the correlation length 5 is given by 

--t-' = 2 In $(w , ) .  (5.26) 

Combining (5.18) and (5:26) we obtain the exact and intriguing relation (a cor- 
responding relation exists for the eight-vertex model: Baxter (198 lb), equation 
(1 0.10.14)) 

(5.27) 

It follows that the correlation length diverges as x + 1-, i.e. at criticality. In the original 

1 pa5 = 5. 



910 R J Baxter and P A  Pearce 

parametrisation we also find that near criticality 

q2 + o+. 2 - 5 f 6  
5 - - = ( 4 )  

4J3 

Hence the correlation exponent is 

Y’ = 516. 

(5.28) 

(5.29) 
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